3.677 \(\int \frac {\sqrt {\sec (c+d x)}}{\sqrt {2+3 \sec (c+d x)}} \, dx\)

Optimal. Leaf size=61 \[ \frac {2 \sqrt {2 \cos (c+d x)+3} \sqrt {\sec (c+d x)} F\left (\frac {1}{2} (c+d x)|\frac {4}{5}\right )}{\sqrt {5} d \sqrt {3 \sec (c+d x)+2}} \]

[Out]

2/5*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2/5*5^(1/2))*(3+2*cos(d*x+c))
^(1/2)*sec(d*x+c)^(1/2)/d*5^(1/2)/(2+3*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 61, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {3858, 2661} \[ \frac {2 \sqrt {2 \cos (c+d x)+3} \sqrt {\sec (c+d x)} F\left (\frac {1}{2} (c+d x)|\frac {4}{5}\right )}{\sqrt {5} d \sqrt {3 \sec (c+d x)+2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sec[c + d*x]]/Sqrt[2 + 3*Sec[c + d*x]],x]

[Out]

(2*Sqrt[3 + 2*Cos[c + d*x]]*EllipticF[(c + d*x)/2, 4/5]*Sqrt[Sec[c + d*x]])/(Sqrt[5]*d*Sqrt[2 + 3*Sec[c + d*x]
])

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {2+3 \sec (c+d x)}} \, dx &=\frac {\left (\sqrt {3+2 \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {3+2 \cos (c+d x)}} \, dx}{\sqrt {2+3 \sec (c+d x)}}\\ &=\frac {2 \sqrt {3+2 \cos (c+d x)} F\left (\frac {1}{2} (c+d x)|\frac {4}{5}\right ) \sqrt {\sec (c+d x)}}{\sqrt {5} d \sqrt {2+3 \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 61, normalized size = 1.00 \[ \frac {2 \sqrt {2 \cos (c+d x)+3} \sqrt {\sec (c+d x)} F\left (\frac {1}{2} (c+d x)|\frac {4}{5}\right )}{\sqrt {5} d \sqrt {3 \sec (c+d x)+2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Sec[c + d*x]]/Sqrt[2 + 3*Sec[c + d*x]],x]

[Out]

(2*Sqrt[3 + 2*Cos[c + d*x]]*EllipticF[(c + d*x)/2, 4/5]*Sqrt[Sec[c + d*x]])/(Sqrt[5]*d*Sqrt[2 + 3*Sec[c + d*x]
])

________________________________________________________________________________________

fricas [F]  time = 0.48, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {\sec \left (d x + c\right )}}{\sqrt {3 \, \sec \left (d x + c\right ) + 2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(2+3*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(sec(d*x + c))/sqrt(3*sec(d*x + c) + 2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\sec \left (d x + c\right )}}{\sqrt {3 \, \sec \left (d x + c\right ) + 2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(2+3*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(sec(d*x + c))/sqrt(3*sec(d*x + c) + 2), x)

________________________________________________________________________________________

maple [C]  time = 1.49, size = 142, normalized size = 2.33 \[ -\frac {i \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right ) \sqrt {5}}{5 \sin \left (d x +c \right )}, \sqrt {5}\right ) \sqrt {10}\, \sqrt {\frac {1}{\cos \left (d x +c \right )}}\, \sqrt {\frac {3+2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \left (\sin ^{2}\left (d x +c \right )\right ) \sqrt {\frac {3+2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {5}}{5 d \left (2 \left (\cos ^{2}\left (d x +c \right )\right )+\cos \left (d x +c \right )-3\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(1/2)/(2+3*sec(d*x+c))^(1/2),x)

[Out]

-1/5*I/d*EllipticF(1/5*I*(-1+cos(d*x+c))*5^(1/2)/sin(d*x+c),5^(1/2))*10^(1/2)*(1/cos(d*x+c))^(1/2)*((3+2*cos(d
*x+c))/cos(d*x+c))^(1/2)*cos(d*x+c)*sin(d*x+c)^2*((3+2*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*2^(1/2)*(1/(1+cos(d*x
+c)))^(1/2)/(2*cos(d*x+c)^2+cos(d*x+c)-3)*5^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\sec \left (d x + c\right )}}{\sqrt {3 \, \sec \left (d x + c\right ) + 2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(2+3*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(sec(d*x + c))/sqrt(3*sec(d*x + c) + 2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{\sqrt {\frac {3}{\cos \left (c+d\,x\right )}+2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(c + d*x))^(1/2)/(3/cos(c + d*x) + 2)^(1/2),x)

[Out]

int((1/cos(c + d*x))^(1/2)/(3/cos(c + d*x) + 2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\sec {\left (c + d x \right )}}}{\sqrt {3 \sec {\left (c + d x \right )} + 2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(1/2)/(2+3*sec(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(sec(c + d*x))/sqrt(3*sec(c + d*x) + 2), x)

________________________________________________________________________________________